在计算机中,所有数据都是以二进制数的形式存储的,字符 char 也不例外。为了表示字符,我们需要建立一套“字符集”,规定每个字符和二进制数之间的一一对应关系。有了字符集之后,计算机就可以通过查表完成二进制数到字符的转换。
ASCII 字符集
ASCII 码是最早出现的字符集,其全称为 American Standard Code for Information Interchange(美国标准信息交换代码)。它使用 7 位二进制数(一个字节的低 7 位)表示一个字符,最多能够表示 128 个不同的字符。如图 3-6 所示,ASCII 码包括英文字母的大小写、数字 0 ~ 9、一些标点符号,以及一些控制字符(如换行符和制表符)。
然而,ASCII 码仅能够表示英文。随着计算机的全球化,诞生了一种能够表示更多语言的 EASCII 字符集。它在 ASCII 的 7 位基础上扩展到 8 位,能够表示 256 个不同的字符。
在世界范围内,陆续出现了一批适用于不同地区的 EASCII 字符集。这些字符集的前 128 个字符统一为 ASCII 码,后 128 个字符定义不同,以适应不同语言的需求。
GBK 字符集
后来人们发现,EASCII 码仍然无法满足许多语言的字符数量要求。比如汉字有近十万个,光日常使用的就有几千个。中国国家标准总局于 1980 年发布了 GB2312 字符集,其收录了 6763 个汉字,基本满足了汉字的计算机处理需要。
然而,GB2312 无法处理部分罕见字和繁体字。GBK 字符集是在 GB2312 的基础上扩展得到的,它共收录了 21886 个汉字。在 GBK 的编码方案中,ASCII 字符使用一个字节表示,汉字使用两个字节表示。
Unicode 字符集
随着计算机技术的蓬勃发展,字符集与编码标准百花齐放,而这带来了许多问题。一方面,这些字符集一般只定义了特定语言的字符,无法在多语言环境下正常工作。另一方面,同一种语言存在多种字符集标准,如果两台计算机使用的是不同的编码标准,则在信息传递时就会出现乱码。
那个时代的研究人员就在想:如果推出一个足够完整的字符集,将世界范围内的所有语言和符号都收录其中,不就可以解决跨语言环境和乱码问题了吗?在这种想法的驱动下,一个大而全的字符集 Unicode 应运而生。
Unicode 的中文名称为“统一码”,理论上能容纳 100 多万个字符。它致力于将全球范围内的字符纳入统一的字符集之中,提供一种通用的字符集来处理和显示各种语言文字,减少因为编码标准不同而产生的乱码问题。
自 1991 年发布以来,Unicode 不断扩充新的语言与字符。截至 2022 年 9 月,Unicode 已经包含 149186 个字符,包括各种语言的字符、符号甚至表情符号等。在庞大的 Unicode 字符集中,常用的字符占用 2 字节,有些生僻的字符占用 3 字节甚至 4 字节。
Unicode 是一种通用字符集,本质上是给每个字符分配一个编号(称为“码点”),但它并没有规定在计算机中如何存储这些字符码点。我们不禁会问:当多种长度的 Unicode 码点同时出现在一个文本中时,系统如何解析字符?例如给定一个长度为 2 字节的编码,系统如何确认它是一个 2 字节的字符还是两个 1 字节的字符?
对于以上问题,一种直接的解决方案是将所有字符存储为等长的编码。如图 3-7 所示,“Hello”中的每个字符占用 1 字节,“算法”中的每个字符占用 2 字节。我们可以通过高位填 0 将“Hello 算法”中的所有字符都编码为 2 字节长度。这样系统就可以每隔 2 字节解析一个字符,恢复这个短语的内容了。
然而 ASCII 码已经向我们证明,编码英文只需 1 字节。若采用上述方案,英文文本占用空间的大小将会是 ASCII 编码下的两倍,非常浪费内存空间。因此,我们需要一种更加高效的 Unicode 编码方法。
UTF-8 编码
目前,UTF-8 已成为国际上使用最广泛的 Unicode 编码方法。它是一种可变长度的编码,使用 1 到 4 字节来表示一个字符,根据字符的复杂性而变。ASCII 字符只需 1 字节,拉丁字母和希腊字母需要 2 字节,常用的中文字符需要 3 字节,其他的一些生僻字符需要 4 字节。
UTF-8 的编码规则并不复杂,分为以下两种情况。
- 对于长度为 1 字节的字符,将最高位设置为
0
,其余 7 位设置为 Unicode 码点。值得注意的是,ASCII 字符在 Unicode 字符集中占据了前 128 个码点。也就是说,UTF-8 编码可以向下兼容 ASCII 码。这意味着我们可以使用 UTF-8 来解析年代久远的 ASCII 码文本。 - 对于长度为
n
字节的字符(其中n>1
),将首个字节的高n
位都设置为1
,第n+1
位设置为0
;从第二个字节开始,将每个字节的高 2 位都设置为10
;其余所有位用于填充字符的 Unicode 码点。
除了 UTF-8 之外,常见的编码方式还包括以下两种。
UTF-16 编码:使用 2 或 4 字节来表示一个字符。所有的 ASCII 字符和常用的非英文字符,都用 2 字节表示;少数字符需要用到 4 字节表示。对于 2 字节的字符,UTF-16 编码与 Unicode 码点相等。 UTF-32 编码:每个字符都使用 4 字节。这意味着 UTF-32 比 UTF-8 和 UTF-16 更占用空间,特别是对于 ASCII 字符占比较高的文本。 从存储空间占用的角度看,使用 UTF-8 表示英文字符非常高效,因为它仅需 1 字节;使用 UTF-16 编码某些非英文字符(例如中文)会更加高效,因为它仅需 2 字节,而 UTF-8 可能需要 3 字节。
从兼容性的角度看,UTF-8 的通用性最佳,许多工具和库优先支持 UTF-8 。
行尾不一致,要将行尾标准化吗
Unix不同的标准引起的,即“回车”和“换行”的问题。 “回车”和“换行”是ASCII字符集中两个不可见的控制符。 “回车”就是CHAR(13),即\r;“换行”就是CHAR(10),即\n。 至于“回车”和“换行”是来源于打字机,没见过打字机或没见过DOS时代的光标恐怕不好理解,因为GUI时代光标都是自由移动的不再有回车的意义。 在Unix中“回车”不换行,“换行”才换行,行尾只需要一个“换行”,而在Windows中,“回车”和“换行”都换行,“回车”+“换行”才是行尾。